1. HOME
  2. 応用脳科学アカデミー

応用脳科学アカデミー

     

機械学習

予測符号化原理に基づく実ロボットの知能化と事例:尾形 哲也(早稲田大学 理工学術院 基幹理工学部 教授)

深層学習に代表される機械学習では、大量のデータを学習し、最適な汎化性能を持つモデルの作成を目的とする。しかしながら、開かれている実世界で活動する実ロボットにおいて、全ての状況で最適なポリシーを獲得することは不可能であり、...

説明可能AI (XAI)、共進化AI (CAI)、そして職人芸的AI (CAI)へ ~深層学習の次の世代のAIと人との関わりあいについて~:長尾 智晴(横浜国立大学 大学院環境情報研究院 教授)

現在、機械学習の中心となっている深層学習(ディープラーニング)は、高精度であるものの説明性が極めて低く、処理の判断根拠や機序を人が理解することが困難であり、産業界への導入の妨げになっています。深層学習の説明性を高めること...

深層学習を説明するAIとは? ~深層学習・機械学習・人工脳の今後について~:長尾 智晴(横浜国立大学 大学院環境情報研究院 教授)

人工ニューラルネットワークの研究が以前から行われており,現在,深層学習(ディープラーニング)が注目されていますが,処理内容がブラックボックスになることが企業へのAI導入の妨げになっています.このため,深層学習などの機械学...